Dynamic Analysis of Bajaj Pulsar 150cc Connecting Rod Using ANSYS 14.0

Amit Kumar\(^1\), Bhingole P.P.\(^1\)* and Dinesh Kumar\(^2\)

\(^1\)Department of Mechanical Engineering, Graphical Era University, Dehradun, Uttarakhand, India.
\(^2\)UCET, VBU, Hazaribagh, India.

*Corresponding author e-mail: pramod_bhingole@yahoo.com

Abstract - Connecting rod is an important part of i.c. Engine which form link between piston and crankshaft to convert linear reciprocating motion of the piston to the rotary motion of the crankshaft. Till now, vast research is going on in the field of metallurgy and resulted in large number of newly developed materials are available to select materials for particular applications. Focusing on this issue, in this study the connecting rod modulate and simulated for the dynamic analysis by using catia software for modelling-design of connecting rod and ansys 14.0 for dynamic analysis. Using available high strengthen alloy is used for the connecting rod of bajaj pulsar 150cc for the weight reduction to reduce moment of inertia. Dynamic analysis is carried out for determine the von mises stress, strain, and total deformation is calculated under loading conditions of compression and tension at crank end and pin end of connecting rod.

Keywords: Finite element modeling, dynamic analysis, connecting rod, weight reduction

I. INTRODUCTION

In automotive engines connecting rods are well known components which are used for the convert linear, reciprocating motion of the piston into rotating motion of the crank shaft. During the working and its life time connecting rods are made for sustain cyclic and complex loading. That is axial tension forces at the time of exhaust stroke, compression forces occurs at the power stroke, bending stresses which are caused by the thrust, piston pulling and the centrifugal force generated by rotating crankshaft.

![Fig. 1 Schematic diagram of a connecting rod with cross section of IC engine][1]

To sustain cyclic and complex loading, the connecting rods must have the highest possible rigidity at the lowest weight. Designing point of view I-section of the connecting rods are designed to provide maximum rigidity with minimum weight. Stress analysis it is observed that maximum stress is produced near the piston end, and it is decreased by increasing the material near the piston end. To keep the inertia forces as low as possible particularly in case of high speed engines,

I-section of the connecting rod is used and it can also withstand high gas pressure. The connecting rods are manufactured by different modern processes, there are sand cast, wrought forged, and powder metallurgy. The materials used for connecting rods are mild carbon steels (having 0.35 to 0.45 percent carbon), alloy steels (chromium-nickel or chromium-molybdenum steels) and different alloys like aluminum alloys, magnesium alloys, titanium alloys and polymeric materials. These alloys are used for different applications depending upon the ultimate tensile strength required for the particular application.

Till now, vast research is going on in the field of metallurgy and resulted in large number of newly developed materials are available to select materials and its particular applications. Focusing on this issue, in this study the connecting rod is modulate and simulated for the dynamic analysis by using CATIA software for modeling-design of connecting rod and ANSYS 14.0 for dynamic analysis.

II. FORCE ACTING ON CONNECTING ROD

The following are the forces acting on the connecting rod:

1. Force on the piston due to gas pressure and inertia of the reciprocating parts,
2. Force due to inertia of the connecting rod or inertia bending forces,
3. Force due to friction of the piston rings and of the piston, and
4. Force due to friction of the piston pin bearing and the crank-pin bearing.

An expression for the forces acting on a vertical engine is discussed below.

Let,

- \(P \) = Maximum pressure of gas,
- \(D \) = Diameter of piston,
- \(A = \frac{\pi D^2}{4} \) = Cross-section area of piston,
- \(m_R \) = Mass of reciprocating parts (Mass of piston, gudgeon pin + \(\frac{1}{3} \)rd mass of connecting rod),
- \(\omega \) = Angular speed of crank,
- \(\phi \) = Angle of inclination of the connecting rod with the line of stroke
- \(\theta \) = Angle of inclination of the crank from top dead center
- \(r \) = Radius of crank
- \(l \) = Length of connecting rod
- \(n \) = Ratio of length of connecting rod to radius of crank = \(\frac{l}{r} \)
- \(F_p \) = Force acting on piston pin (Force due to gas pressure ± Inertia force),

Force on the piston due to gas pressure is,

\[F_g = \text{Area} \times \text{Pressure} = \left(\frac{\pi D^2}{4} \times P_{\text{max}} \right), \]

Rankine’s formula and buckling load acting on the piston is \[W_B = \frac{[\sigma \times A]}{[1+a(L/K_{xx})]} \]

III. CONFIGURATION OF 150cc ENGINE (PULSAR 150 MODEL)

- Engine type air cooled 4-stroke
- Bore × Stroke (mm) = 58 × 56.4
- Displacement = 149.01 cc
- Maximum Power = 15.1ps @ 9000 rpm
- Maximum Torque = 12.45 Nm @ 6500rpm
- Compression Ratio = 9.5 \(\pm \) 0.5:1
- Density of Petrol \(C_8H_{18} \) = 737.22 kg/m³ = 737.22E⁻⁹ kg/mm³
- Temperature \(T = 60 \) F = 288.855 K

In this particular study, following the values of (Bajaj Pulsar 150cc) engine parameters are calculated by using related formula and these are Mass (M)-0.11 kg, molecular Weight of Petrol-0.11422 kg/mole, R-72.76 and pressure (P) - 15.494 Mpa [2].

IV. DIMENSIONS OF CROSS-SECTION OF THE CONNECTING ROD

In an I.C. engine the connecting rod is subjected to alternating forces i.e. direct compressive and tensile forces and the compressive forces acted on the connecting rod are much higher than that of tensile forces. Therefore, the cross-section of the connecting rod is designed by using a Strut and the Rankine’s formula [2].

\[W_B = \frac{[\sigma \times A]}{[1+a(L/K_{xx})]} \]

For both ends hinged \(L=l \)

\[W_B = \frac{[\sigma \times A]}{[1+a(L/2 K_{yy})]} \]

For both ends fixed, \(L = l/2 \)

In order to have a connecting rod equally strong in the buckling about both the axes, the buckling loads must be equal, i.e.

\[\frac{[\sigma \times A]}{[1+a(L/K_{xx})]} = \frac{[\sigma \times A]}{[1+a(L/2 K_{yy})]} \]

\[K_{xx}^2 = 4K_{yy}^2 \] or \(I_{xx} = 4I_{yy} \) \((I = A.K^2)\)

By this assumption it is declare that the connecting rod is four times strong in buckling about YY-axis as compare to XX-axis (If \(I_{xx}>4 I_{yy} \) then buckling takes place about YY-axis. And if \(I_{xx}<4 I_{yy} \) then buckling takes place about XX-axis). However, in actual practice, \(I_{xx} \) is kept slightly less as compare to 4\(I_{yy} \). It is usually taken between 3 to 3.5 and the connecting rod design for buckling about XX-axis. The Design will always be satisfactory buckling about YY-axis. The most suitable section for the connecting rod with the proportions shows in Fig 4.
V. DESIGNING PROCESS OF CONNECTING ROD
FOR 20CrMo:

Mechanical Properties of 20CrMo:
Density: 7860 kg/m³
Elastic Modulus: 210 GPa
Poisson's Ratio: 0.3
Tensile Strength: 885 MPa
Yield Strength: 685 MPa
Percent Elongation: ≥12%
Reduction of area (%): 50
Heating-up Temperature (°C): 500

Designing process:
Thickness of flange & web of the section = t
Width of section B = 4t
Height of section H = 5t
A of section = 2(4t×t) + 3t×t
A = 11t²
MI of section about X-axis:
\[I_{XX} = \frac{bh^3}{12} \]
Now, moment of inertia of a rectangle about the YY-axis passing through its C.G.
\[I_{YY} = \frac{bh^3}{12} \]
Since the value of \(I_{XX} / I_{YY} \) lies between 3 and 3.5, therefore, I-section chosen is quite satisfactory.

Now,
P = 15.494 Mpa
Bore Diameter (D) = \(\frac{\pi D^2}{4} \times P \)
Fg = 40936.37 N
By considering the buckling of the rod about X-axis and applying the Rankine’s formula.
We know that buckling load, (assuming both ends hinged).
\[W_{B} = \text{Max. gas force (Fg)} \times \text{Factor of safety} \]
\[W_{B} = 40936.37 \times 1.15 \]
Whereas the buckling load \(W_{B} \) may be calculated by using the following relation,
\[W_{B} = \frac{[\sigma_{c} \times A]}{[1 + a(L/ K_{xx})]} \]
Where,
σ_{c} = Compressive yield stress.
K_{xx} = Radius of gyration about X-axis.
A = cross sectional area of the connecting rod.
L = length of the connecting rod.
σ_{c} = Compressive yield stress.
W_{B} = Crippling or buckling load.
I_{X} and I_{Y} = Moment of inertia of the section about x-axis and y-axis respectively.
K_{X} and K_{Y} = Radius of gyration of the section about x-axis and y-axis respectively.
A = cross sectional area of the connecting rod.
L = length of the connecting rod.
σ_{c} = Compressive yield stress.
W_{B} = Crippling or buckling load.
I_{X} and I_{Y} = Moment of inertia of the section about x-axis and y-axis respectively.
K_{X} and K_{Y} = Radius of gyration of the section about x-axis and y-axis respectively.

Table I: All Analytical Data of All I-section Alloys

<table>
<thead>
<tr>
<th>Materials</th>
<th>20CrMo</th>
<th>30CrMo</th>
<th>42CrMo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total thickness of I-section</td>
<td>2.71 mm</td>
<td>2.56 mm</td>
<td>2.44 mm</td>
</tr>
<tr>
<td>Width of section B</td>
<td>10.86 mm</td>
<td>10.24 mm</td>
<td>9.76 mm</td>
</tr>
<tr>
<td>Height of section H</td>
<td>13.57 mm</td>
<td>12.80 mm</td>
<td>12.2 mm</td>
</tr>
<tr>
<td>Height of section of small end H1</td>
<td>11.21 mm</td>
<td>10.29 mm</td>
<td>10.06 mm</td>
</tr>
<tr>
<td>Height of section of big end H2</td>
<td>15.95 mm</td>
<td>15.04 mm</td>
<td>14.33 mm</td>
</tr>
</tbody>
</table>

Table II: Chemical Composition of Steel Alloys Used for the Analysis

<table>
<thead>
<tr>
<th>Materials</th>
<th>20CrMo</th>
<th>30CrMo</th>
<th>42CrMo</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.17–0.24%</td>
<td>0.26–0.34%</td>
<td>0.38–0.45%</td>
</tr>
<tr>
<td>Si</td>
<td>0.17–0.37%</td>
<td>0.17–0.37%</td>
<td>0.17–0.37%</td>
</tr>
<tr>
<td>Mn</td>
<td>0.40–0.70%</td>
<td>0.40–0.70%</td>
<td>0.50–0.80%</td>
</tr>
<tr>
<td>Cr</td>
<td>0.80–1.10%</td>
<td>0.80–1.10%</td>
<td>0.90–1.20%</td>
</tr>
<tr>
<td>Mo</td>
<td>0.15–0.25%</td>
<td>0.15–0.25%</td>
<td>0.15–0.25%</td>
</tr>
</tbody>
</table>
$K_{xx} = 1.78 \, t$,

$A = 11t^2$,

From the equation,

$$
\sigma_c \times A \times [K_{xx}]^2 - [W_b \times [K_{xx}]^2] - [a \times W_b \times L^2] = 0
$$

$t = 2.715 \times 10^{-3} \, m$

$t = 2.715 \, mm$,

Now, cross section of I-section,

Width of section $B = 4t = 4 \times 2.715 = 10.86 \, mm$,

Height of section $H = 5t = 5 \times 2.715 = 13.575 \, mm$,

So height (H) of mid-section = 13.575 mm,

Height of I-section of small end = 0.75H to 0.9H

$H_1 = 10.18 \, mm$ to 12.21 mm

Height of I-section of big end = 1.1H to 1.25H

$H_2 = 14.93 \, mm$ to 16.986 mm

Same procedure is followed for the three different materials.

From this table No. 3 it is noticed that as material properties increased dimensions of the connecting rod reduces, ultimately weight of the connecting rod reduces [2, 9-12].

VI. ANALYSIS OF CONNECTING ROD MADE UP OF 20CrMo:

![Fig. 7 Analysis For 20CrMo Connecting rod, (a) design model of C.R (b) meshed model of connecting rod (c) von mises stress analysis (d) maximum principal stress analysis.]

VII. ANALYSIS OF CONNECTING ROD MADE UP OF 30CrMo:

![Fig. 7 Analysis For 30CrMo Connecting rod, (a) design model of C.R (b) meshed model of connecting rod (c) von mises stress analysis (d) maximum principal stress analysis.]

Amit Kumar, Bhingole P.P. and Dinesh Kumar
VIII. ANALYSIS OF CONNECTING ROD MADE UP OF 20CrMo

TABLE IV COMPARATIVE STATIC ANALYSIS OF BAJAJ PULSAR 150CC CONNECTING ROD USING ANSYS FOR THE THREE DIFFERENT MATERIALS.

<table>
<thead>
<tr>
<th>Materials</th>
<th>20CrMo</th>
<th>30CrMo</th>
<th>42CrMo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield Strength (MPa)</td>
<td>685</td>
<td>785</td>
<td>930</td>
</tr>
<tr>
<td>Ultimate strength (MPa)</td>
<td>885</td>
<td>930</td>
<td>1080</td>
</tr>
<tr>
<td>Value of t (mm)</td>
<td>2.715</td>
<td>2.568</td>
<td>2.446</td>
</tr>
<tr>
<td>Mass (Kg)</td>
<td>0.203</td>
<td>0.190</td>
<td>0.179</td>
</tr>
<tr>
<td>Deflection (mm)</td>
<td>0.23771</td>
<td>0.26047</td>
<td>0.28125</td>
</tr>
<tr>
<td>Equivalent (von-Mises) Stress (MPa)</td>
<td>928.13</td>
<td>970.64</td>
<td>1055.7</td>
</tr>
<tr>
<td>Maximum Principal Stress (Gpa)</td>
<td>1.0285</td>
<td>1.0522</td>
<td>1.2100</td>
</tr>
</tbody>
</table>

TABLE V COMPARATIVE DYNAMIC ANALYSIS OF BAJAJ PULSAR 150CC CONNECTING ROD USING ANSYS FOR THE THREE DIFFERENT MATERIALS.

<table>
<thead>
<tr>
<th>Materials</th>
<th>20CrMo</th>
<th>30CrMo</th>
<th>42CrMo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield Strength(MPa)</td>
<td>685</td>
<td>785</td>
<td>930</td>
</tr>
<tr>
<td>Ultimate strength(MPa)</td>
<td>885</td>
<td>930</td>
<td>1080</td>
</tr>
<tr>
<td>Value of t (mm)</td>
<td>2.71</td>
<td>2.56</td>
<td>2.44</td>
</tr>
<tr>
<td>Mass(Kg)</td>
<td>0.203</td>
<td>0.190</td>
<td>0.179</td>
</tr>
<tr>
<td>Deflection (mm)</td>
<td>0.23715</td>
<td>0.23715</td>
<td>0.28</td>
</tr>
<tr>
<td>Equivalent (von-Mises) Stress (MPa)</td>
<td>923.62</td>
<td>923.62</td>
<td>1049.3</td>
</tr>
<tr>
<td>Maximum Principal Stress (Gpa)</td>
<td>1.0273</td>
<td>1.0273</td>
<td>1.2077</td>
</tr>
</tbody>
</table>
Fig. 7 shows the ANSYS analysis carried out on 20CrMo materials connecting rod, Fig. 7a, shows design model of connecting rod, Fig. 7b shows meshed model of connecting rod, and von mises stress analysis, maximum principal stress analysis are shown in fig 7c-d respectively. Same analysis is carried out for 30CrMo and 42CrMo materials connecting rod represented in fig. 8 and fig. 9 respectively. Table 4 and 5, are shows summary of different properties of 20CrMo, 30CrMo and 42CrMo connecting rod. it is observed that as materials properties increases, (like yield strength and ultimate strength) decreases in the dimension and as well as mass of connecting rod is observed. Static analysis of Bajaj Pulsar 150cc connecting rod using ANSYS it is noticed that mass of the connecting rod reduces and maximum principal stress is also reducing[]. In the dynamic analysis equivalent (von-Mises) Stress are increased and maximum principal stress are decreasing as materials properties increasing that is 20CrMo to 42CrMo.

VII. CONCLUSIONS

42CrMo steel alloy which required less material and less dimensions to sustain required pressure generated inside the cylinder compared with 20CrMo and 30crMo materials connecting rod. For the same amount of forces acting on the connecting rod, the steel alloy 42crMo is 11.67 % less in weight with respect to 20CrMo whereas 30CrMo alloy is only 6.42 % less compared with the 20CrMo conceding rod.

REFERENCES