An Integrated Bridgeless PWM Based Power Converter for Power Factor Correction
K.R. Akhila¹ and Selva Pradeep²
¹PG Student-PED; ²Assistant Professor,
Department of EEE, St. Xaviers Catholic College of Engineering, Chunkankadai - 629 003, Tamil Nadu, India
E-mail: akhilaremesh@gmail.com, ssselvapradeep@gmail.com
(Received on 10 March 2014 and accepted on 15 May 2014)

Abstract - This paper proposes a new integrated bridgeless PWM based power converter for power factor correction. The proposed converter integrates the bridgeless boost rectifier with the asymmetrical pulse-width modulation half-bridge dc–dc converter. The proposed converter provides an isolated dc output voltage without using any full-bridge diode rectifier. Conduction losses are lowered by eliminating the full-bridge diode rectifier. Zero-voltage switching of the power switches reduces the switching power losses. The proposed converter provides high power factor and direct power conversion from the line voltage to an isolated dc output voltage without using the full bridge diode rectifier and also gives a high efficiency, and low cost. Conduction losses are lowered with a simple circuit structure.

Keywords: Power converter, Asymmetrical pulse width modulation, Bridgeless, Half bridge, Single stage, Zero-voltage switching (ZVS).

I. Introduction
The advances in power factor correction (PFC) technology have enabled the development of single-phase ac–dc converters in the recent pieces of literature. The previous single-stage PFC ac–dc converters need the full-bridge diode rectifier. The full-bridge diode rectifier increases the conduction losses and decreases the power efficiency. Especially, at low line voltage, the full-bridge diode rectifier causes high conduction losses, resulting in additional thermal management. These problems can be overcome by eliminating the full-bridge diode rectifier. Up to now, however, any bridgeless single-stage PFC ac–dc converter has not been reported for single stage PFC ac–dc converters.

A number of single-stage PFC ac–dc converters have been introduced in the literature. Among them, discontinuous-conduction-mode (DCM) single-stage PFC ac–dc converters are widely used for their simple and efficient structures. Generally, two power stages of the PFC circuit and dc-dc converter are simplified by sharing a common switch or a pair of switches. Most single-stage PFC ac–dc converters use single-switch dc-dc converter topologies such as fly back and forward converters. However, the single-stage single-switch ac-dc converters operate under hard-switching condition.

The voltage stresses of switching devices and power conversion efficiency have not been optimized yet. The practical use of the single-stage single-switch ac-dc converters has been limited for low-power applications with power levels lower than 80 W. Single-stage soft-switching ac-dc converters have been developed to improve the performance of single-stage PFC ac–dc converters. Single-stage soft-switching ac-dc converters based on the half-bridge converter topology are attractive because they provide low component count and zero-voltage switching (ZVS) operation of the power switches. Similar efforts have been put in optimizing and improving the performance of the converter by using active clamping techniques.
II. CIRCUIT DESCRIPTION

Fig.1 shows the circuit diagram of the proposed converter. The bridgeless boost rectifier consists of the boost inductor \(L_b \), dc-link capacitor \(C_d \), and switching devices \(D \), \(D_2 \), \(S_1 \), and \(S_2 \). \(D_1 \) and \(D_2 \) are slow-recovery diodes. \(S_1 \) and \(S_2 \) are MOSFETs. \(D_{S1} \) and \(D_{S2} \) are body diodes of \(S_1 \) and \(S_2 \), respectively. \(C_{S1} \) and \(C_{S2} \) are the output capacitors of \(S_1 \) and \(S_2 \), respectively.

The APWM half-bridge dc–dc converter consists of \(C_d, S_1, S_2 \), blocking capacitor \(C_b \), transformer \(T \), output diodes \(D_{O1} \) and \(D_{O2} \), output filter inductor \(L_o \), and output filter capacitor \(C_o \). \(R_o \) is the output resistor. By sharing \(C_d \), \(S_1 \) and \(S_2 \), the proposed converter integrates the bridgeless boost rectifier with the APWM half bridge dc–dc converter.

III. THEORETICAL ANALYSIS

Principle of Operation

For both positive and negative half-line cycle of \(v_i \), the proposed converter has symmetric operation. In the positive half-line cycle, \(S_1 \) is controlled with duty ratio \(D \). Then, the conduction times of the switches \(S_1 \) and \(S_2 \) are \((1–D) T_s \) and \(D T_s \), respectively. When \(S_1 \) is turned on, the input current \(i_i \) flows through \(L_b, D_1, \) and \(S_1 \). When \(S_1 \) is turned off, the input current \(i_i \) flows through \(L_b, D_1, C_d, S_2, \) and \(D_{S2} \). In the negative half-line cycle, \(S_2 \) is controlled with duty ratio \(D \). Then, the conduction times of the switches \(S_1 \) and \(S_2 \) are \((1–D) T_s \) and \(D T_s \), respectively. When \(S_2 \) is turned on, the input current \(i_i \) flows through \(S_1, D_1, \) and \(L_b \). When \(S_2 \) is turned off, the input current \(i_i \) flows through \(S_1, D_{S1}, C_d, D_1, \) and \(L_b \). The transformer \(T \) has the magnetizing inductor \(L_m \) and leakage inductor \(L_{lk} \) with the turns ratio of \(1 : n \).

\[\text{Interval 1} [t_0, t_1]: \]

At \(t = t_0 \), \(S_1 \) is turned on. The input current \(i_i \) flows through \(L_b, D_1, \) and \(S_1 \). The boost inductor \(L_b \) stores energy from the line voltage. The voltage across \(L_m \) is \(V_d – V_b \). The primary current \(i_p \) increases as

\[i_{lb}(t) = \frac{v_i}{L_b(t-t_0)} \quad (1) \]

Transformer \(T \) transfers energy to the output through the output diode \(D_{O1} \). The switch current \(i_{S1} \) is the sum of boost inductor current \(i_{lb} \) and the primary current \(i_p \).

\[\text{Interval 2} [t_1, t_2]: \]

When \(t = t_1 \), \(S_1 \) is turned off. As the primary current \(i_p \) charges \(C_{S1} \) and discharges \(C_{S2} \), the voltage \(V_{S2} \) across \(S_2 \) decreases from \(V_d \) to zero. Since the time interval in this mode is negligible compared to \(T_s \), the primary current \(i_p \) and boost inductor current \(i_{lb} \) are considered to be constant. When the voltage \(V_{S2} \) across \(S_2 \) is zero, the primary current \(i_p \) begins to flow the body diode \(D_{S2} \) of \(S_2 \).
At $t = t_2$, S2 is turned on. ZVS of S2 is achieved because the voltage V_{S2} across S2 is zero. The input current i_i flows through L_b, D_1, C_d, S_2, and D_{S2}. The energy stored in the boost inductor L_b is released to the dc-link capacitor C_d. The voltage across L_m is $-V_b$. The primary current i_p decreases as

$$i_l(t) = i_l(t_2) - \frac{v_i}{L_b(t-t_2)}$$

(2)

The transformer T transfers energy to the output through the output diode D_{o2}. The switch current i_{S2} is the sum of boost inductor current i_{Lb} and the primary current i_p as

Interval 3 \[t_2, t_3\]

At $t = t_3$, S2 is turned OFF. As the primary current i_p charges C_{S2} and discharges C_{S1}. The voltage V_{S1} across S_1 decreases from V_d to zero, while the voltage V_{S2} across S_2 increases from zero to V_d. As long as the switch S_1 is turned ON before the Magnetizing current i_{Lm} changes its direction; ZVS of S_1 can be assured. At the secondary side, the output filter inductor current i_{L_o} freewheels through both output diodes D_{o1} and D_{o2}.

Interval 4 \[t_3, t_4\]

At $t = t_3$, S2 is turned OFF. As the primary current i_p charges C_{S2} and discharges C_{S1}. The voltage V_{S1} across S_1 decreases from V_d to zero, while the voltage V_{S2} across S_2 increases from zero to V_d. As long as the switch S_1 is turned ON before the Magnetizing current i_{Lm} changes its direction; ZVS of S_1 can be assured. At the secondary side, the output filter inductor current i_{L_o} freewheels through both output diodes D_{o1} and D_{o2}.

Fig.2 Interval 1 operation

Fig.3 Interval 2
Interval 5 \([t_4, t_5]\)

At \(t = t_5\), the voltage \(V_S1\) across \(S1\) is zero.

The primary current \(i_p\) begins to flow the body diode DS1 of S1. ZVS of S1 can be achieved when S1 is turned on again.
IV. Circuit Analysis

A. Power Factor

The boost inductor Lb operates at DCM. Then, the peak boost inductor current iLb, peak follows the line voltage vL with a fixed duty ratio to supply the output power for a constant output voltage. Suppose that the converter is lossless and the duty ratio is fixed, the boost inductor Lb should be determined as

\[L_b < \frac{V_{in}}{2DT_s} \frac{1}{2P_{omax}}. \]

It is defined as the ratio of the real to apparent power. Apparent power is defined as the square root of the sum of the real and reactive power.

B. Efficiency

It is defined as ratio of the output real power to the reactive power.

1. DC Characteristics

From the volt-second balance relation on the magnetizing inductor Lm during Ts, the voltage Vb across the capacitor Cb is expressed as

\[V_b = DV_d. \]

From the volt-second balance relation on the output filter inductor Lo during Ts, the following relation between the output voltage Vo and the dc-link capacitor voltage Vd is expressed:

\[\frac{V_o}{V_d} = 2ND (1 - D) \]

V. Simulation and Results

The circuit design was simulated using MATLAB; the schematic circuit is shown in Fig.7 shows the simulation results when the proposed converter supplies 250 W output power.

The proposed bridgeless single-stage ac-dc converter provides high power factor and direct power conversion from the line voltage to an isolated dc output voltage without the using full-bridge diode rectifier. Fig.8 shows the simulated output of source voltage and current.

When the moment switching pulse is withdrawn, power transfer took place immediately and voltage across the main MOSFET is restored.
If we properly adjust the delay between turn-off of switch S1 and turn-on of switch S2, we can get ZVS condition for the main switch and auxiliary switch.

The voltage across switch S2 falls before applying the gate pulse. This indicates the ZVS operation of S2. It can be observe that turn-off transition of S2 is capacitance assisted ZVS. Fig. 9 shows the simulated output voltage and current.

The proposed converter achieves a high-efficiency of 93% with almost unity power factor at 90 Vrms line voltage. Compared to the previous approaches (single-stage design and two-stage design [10]), the proposed approach increase the power efficiency and reduce component counts by lowering conduction losses and by eliminating the full-bridge diode rectifier in the single-stage PFC ac–dc converters. More detailed efficiency comparison, experimental waveforms and circuit design guideline will be discussed in further work.

VI. Conclusion

As a new single-stage PFC scheme, this paper has proposed an integrated bridgeless PWM based power converter. The proposed converter gives a high efficiency by reducing the conduction losses and switching losses.

The proposed converter has the following features for the bridgeless single-stage PFC ac–dc converters:

1. Low switching losses by the ZVS operation of power switches.
2. Simple control method for PFC and output voltage regulation.
3. Low conduction losses by essentially eliminating the full bridge diode rectifier.
4. Reduced component counts by integrating two power conversion.
An Integrated Bridgeless PWM Based Power Converter for Power Factor Correction

REFERENCES

