A Hybrid Approach for Recognition of Hand Written Devnagri Compound Characters
Author : Prashant Yawalkar and M. U. KharatVolume 8 No.2 April-June 2019 pp 70-76
Abstract
Being an effective tool in the world of communication, numerous techniques have been developed for documenting the handwritten text. Few of the exceptional techniques describe the environment of handwritten scripts and further convert it into electronic data by implementing various algorithms. Devnagri is one of the widely used scripts for most popular and commonly used languages like Marathi and Hindi. Recent development in the field of handwritten character recognition based on different methodologies like neural network, fuzzy logic, and deep neural networks has shown remarkable improvement in character recognition accuracy from 75% to 96%. We propose a fuzzy-Neural hybrid approach for recognition of hand written Devnagri compound character that uses a rotation invariant rule-based thinning algorithm as one of the major pre-processing activity. Thinning the characters to their central line, preserving the shape of the character are the distinctive features of thinning algorithm. Concurrent application of different rules to each pixel of the character image results into symmetrical thinning as well as improves the overall speed of the system. The system is trained using Neural Network where the weights are optimized using fuzzy rules improving the accuracy of the system.Results obtained for the fuzzy-neural based system with thinning helps in preserving the topology of the characters written in Devnagri and prove that accuracy of the system has stabilized in the band of 92-97% which was fluctuating in the band of 89-94% for the previously implemented systems. The system also shows a substantial improvement in accuracy for recognition of compound characters in comparison with our previously implemented system.
Keywords
Character Recognition, Neural Network, Rotation Invariant, Thinning, Fuzzy Logic, Fuzzy-Neural, Image Acquisition, Segmentation, Feature Extraction
References
[1] Choudhary and Rishi, “Improving The Character Recognition Efficiency of Feed Forward BP Neural Network”, International Journal of Computer Science & Information Technology (IJCSIT), Vol. 3, No 1, pp. 85-96, Feb 2011.
[2] Vikas J Dongre and Vijay H Mankar, “Devanagari Document Segmentation Using Histogram Approach”, International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.1, No.3, pp. 46-53, August 2011.
[3] R.M. Noorullah, and Dr. A. Damodaran, “Innovative Thinning and Gradient Algorithm For Edge Field and Categorization Skeleton Analysis of Binary And Grey Tone Images”, Journal Of Theoretical And Applied Information Technology, Vol. 5. No.1, pp. 75-80, 2009.
[4] Jon Almazan, Albert Gordo, Alicia Forn_es, and Ernest Valveny, “Word Spotting and Recognition with Embedded Attributes”, IEEE Transactions on Pattern Analysis And Machine Intelligence, Vol. 36, No.12, pp. 2552- 2566, December 2014.
[5] P. M. Yawalkar and M. U. Kharat, “ Handwritten Character Recognition Systems”, International Journal of Advanced Trends in Computer Science and Engineering, Vol. 5, No. 6, pp. 95- 110, Nov- Dec 2016.
[6] Prachi Mukherji, and PritiRege, “Shape Feature and Fuzzy logic based offline Devanagari handwritten optical character Recognition”, International Journal of Pattern Recognition Research, Vol. 4, pp. 52-68, 2009.
[7] Maher Ahmed and Rabab Ward, “A Rotation Invariant Rule-Based Thinning Algorithm for Character Recognition”, IEEE Transactions on Pattern Analysis And Machine Intelligence, Vol. 24, No. 12, pp.1672-1678, Dec. 2002.
[8] P. M. Yawalkar, M. U. Kharat and S. V. Gumaste, “Segmentation of Multiple Touching Hand Written Devnagari Compound Characters: Image Segmentation for FeatureExtraction”, IGI Global, Chapter 8, pp.140-163, May 2018.
[9] Yu Qiao, Mikihiko Nishiara, and Makoto Yasuhara, “A Framework Toward Restoration of Writing Order from Single-Stroked Handwriting Image”, IEEE Transactions On Pattern Analysis And Machine Intelligence, Vol. 28, No. 11, pp. 1724- 1737, Nov. 2006.
[10] H. B. Kekre, M. U. Kharat and S. R. Sange, “Image data compression using new half toning operators and run length encoding”, Springer, DOI 10.1007/978-81-8489-989, pp. 208-213, 2011.
[11] Lazzerini, Marcelloni, and Reyneri, “Neuro-fuzzy Off-line Recognition of Handwritten Sentences”, in Proceedings of Fourth International Conference on knowledge-Based Intelligent Engineering Systems, Sept 2000, pp. 440-443.
[12] M. Hanmandlu, K. R. Murali Mohan and Sourav Chakraborty, “Fuzzy Logic Based Handwritten Character Recognition”, IEEE, pp. 42- 45, 2001.
[13] Sara L. Su, Chenyu Wu, and Ying-Qing Xu, “A Hybrid Approach to Rendering Handwritten Characters”, in Proceedings of the 12th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, pp. 1-8, January 2004.
[14] Alginahi, El-Feghi, Ahmadi and Sid-Ahmed, “Optical Character Recognition System Based On A Novel Fuzzy Descriptive Features”, in Proceedings of ICSP-04, pp. 926-929, 2004.
[15] Mohammed Zeki Khedher, and Ghayda Al-Tali, “Recognition of secondary characters in handwritten Arabic using Fuzzy Logic”, in Proceedings of International Conference on Machine Intelligence (ICMI’05), 2005.
[16] Yu Qiao, MikihikoNishiara, and Makoto Yasuhara, “A Framework toward Restoration of Writing Order from Single-Stroked Handwriting Image”, IEEE Transactions On Pattern Analysis And Machine Intelligence, Vol. 28, No. 11, pp. 1724- 1737, Nov. 2006.
[17] Thierry Artieres, Sanparith Marukatat, and Patrick Gallinari, “Online Handwritten Shape Recognition Using Segmental Hidden Markov Models”, IEEE Transactions On Pattern Analysis And Machine Intelligence, Vol. 29, No. 2, pp. 205- 217, Feb. 2007.
[18] Koorosh Samimi Daryoush, Maryam Khademi, Alireza Nikookar, and Aida Farahani, “The Application of Local Linear N euro Fuzzy Model in Recognition of Online Persian Isolated Characters”, in Proceedings of International Conference on Advanced Computer Theory and Engineering (ICACTE), pp. 574-577, 2010.
[19] Sushama Shelke, and Shaila Apte, “A Multistage Handwritten Marathi Compound Character Recognition Scheme using Neural Networks and Wavelet Features”, International Journal of Signal Processing, Image Processing and Pattern Recognition, Vol. 4, No. 1, pp. 81-94, March 2011.
[20] Ranpreet Kaur, and Baljit Singh, “A Hybrid Neural Approach For Character Recognition System”, International Journal of ComputerScience and Information Technologies, Vol. 2, No. 2, pp. 721-726, 2011.
[21] S.F. Bahgat, S. Ghomiemy, S. Aljahdali, and M. Alotaibi, “A Proposed Hybrid Technique for Recognizing Arabic Characters”, International Journal of Advanced Research in Artificial Intelligence, Vol. 1, No. 4, pp. 35-43, 2012.
[22] Moncef Charfi, Monji Kherallah, Abdelkarim El Baati, and Adel M. Alimi, “A New Approach for Arabic Handwritten Postal Addresses Recognition”, International Journal of Advanced Computer Science and Applications, Vol. 3, No. 3, pp. 1-7, 2012.
[23] Debananda Padhi, “Novel Hybrid approach for Odia Handwritten Character Recognition System”, International Journal of Advanced Research in Computer Science and Software Engineering, Vol. 2, No. 5, pp. 150-157, May 2012.
[24] Satish Lagudu, CH. V. Sarma, “Hand Writing Recognition Using Hybrid Particle Swarm Optimization & Back Propagation Algorithm”, International Journal of Application or Innovation in Engineering, Vol. 2, No. 1, pp. 75-81, Jan. 2013.
[25] K.V. Kale, and M. M. Kazi, “Handwritten and Printed Devanagari Compound using Multiclass SVM Classifier with Orthogonal moment Feature”, International Journal of Computer Applications, Vol. 71, No. 24, pp. 21-27, June 2013.
[26] Poonam B. Kadam, Latika R. Desai, “A Hybrid Approach to Detect and Recognize Texts in Images”, International Journal of Research in Computer and Communication Technology, Vol. 2, No. 7, pp. 405-410, July 2013.
[27] Seema A. Dongare, Dhananjay Kshirsagar, and Snehal Waghchaure, “Handwritten Devanagari Character Recognition using Neural Network”, IOSR Journal of Computer Engineering, Vol. 16, No. 2, pp. 74-79, Mar-Apr. 2014.
[28] J. R. Prasad, and U. V. Kulkarni, “Gujrati Character Recognition using Adaptive Neuro Fuzzy Classifier”, proceedings of International Conference on Electronic Systems, Signal Processing and Computing Technologies, pp. 407-414, 2014.
[29] Saniya Ansari, and Udaysingh Sutar, “Devanagari Handwritten Character Recognition using Hybrid Features Extraction and Feed Forward Neural Network Classifier (FFNN)”, International Journal of Computer Applications, Vol. 129, No.7, pp. 22-27, Nov. 2015.
[30] Santosh Kumar Henge, and Dr. B. Rama, “OCR-Mirror Image Reflection Approach Document Back Side Character Recognition by using Neural Fuzzy Hybrid System”, in Proceedings of 7th International Advance Computing Conference, IEEE, pp. 738-743, 2017.
[31] Mahesh Jangid, and Sumit Srivastava, “Handwritten Devanagari Character Recognition Using Layer-Wise Training of Deep Convolutional Neural Networks and Adaptive Gradient Methods”, Journal of Imaging, Feb. 2018.