
Asian Journal of Science and Applied Technology (AJSAT)
Entanglement Measure Based on Matrix Realignment
Author : Sushamana Sharma and J K SharmaVolume 7 No.1 January-June 2018 pp 17-19
Abstract
Quantum information processing is the essential requirement of quantum technology. The foundation of information processing is the quantum entanglement. We propose a new entanglement measure to quantify entanglement and it is based on matrix realignment technique. A comparative study of proposed measure with concurrence for different types of entangled states is also discussed.
Keywords
Concurrence, Density matrix, Quantum Information Processing, Quantum Entanglement, Matrix Realignment Criterion
References
[1] Charles H. Bennett and David P. DiVincenzo, “Quantum Information and Computation”, Nature, Vol. 404, pp. 247-255, 2000.
[2] A. Einstein, B. Podolsky and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?”, Phys. Rev. Vol. 47, pp. 777-780, 1935.
[3] E. Schrödinger , Die Naturwissenschaften, Vol. 23, pp. 807, 1935
[4] J. S. Bell, “On the Einstein PodolskyRosen paradox”, Physics (Long Island City, N.Y.) Vol. 1, pp. 195-200, 1964.
[5] R. F. Werner, “Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model”, Phys. Rev. A, Vol. 40, pp. 4277, 1989.
[6] K. G. H. Vollbrecht and R.F. Werner, “Entanglement Measures Under Symmetry”, Phys. Rev. A, Vol. 64, pp. 062307, 2001.
[7] R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, “Quantum Entanglement”, Rev. Mod. Phys., Vol. 81, pp. 865, 2009. or eprint quant-ph/0702225, pg. 110
[8] A. Peres, “Separability Criterion for Density Matrices”, Phys. Rev. Lett., Vol. 77, pp. 1413 , 1996.
[9] A. Miranowicz, M. Piani, P. Horodecki and R. Horodecki, “Inseparability Criteria Based On Matrices Of Moments”, Phys. Rev. A, Vol. 80, pp. 052303, 2009 or eprint quant-ph/0605001
[10] G. Vidal and R.F. Werner, “Computable Measure of Entanglement”, Phys. Rev. A, Vol. 65, pp. 032314, 2002.
[11] W.K. Wootters, “Entanglement of Formation of an Arbitrary State of Two Qubits”, Phys. Rev. Lett., Vol. 80, pp. 2245, 1998.