
Asian Journal of Science and Applied Technology (AJSAT)
First-Principles Study of Dielectric Constant and Polarizability in Polydiacetylene Crystal
Author : H. S. Omkar and H. R. SreepadVolume 7 No.1 January-June 2018 pp 20-22
Abstract
First principles calculations based on Density Functional Theory have been done on Polydiacetylene. Its triclinic unit cell has been simulated. Band gap in case of this material comes out to be 0.75eV. This value is in the range exhibited by semiconducting materials. Dielectric constant and Polarizability of the material have been computed. The value of dielectric constant comes out to be 50.6, 59.6 and 44.6 along X, Y and Z axes respectively and its average value comes out to be 51.6. Polarizability comes out to be 33.7 (Å)3, 34 (Å)3 and 33.4 (Å)3 along X, Y and Z axes respectively with an average value of 33.7 (Å)3.
Keywords
Polydiacetylene, Dielectric Constant, Electronic Density of States, First-principles Calculations, Polarizability, Chemical Engineering
References
[1] H. J. Monkhorst and J. D. Pack, Phys. Rev. B, Vol. 13, pp. 5188-5192, 1976.
[2] C. Galiotis, , R. T. Read, P. H. J. Yeung, , R. J. Young, , I. F. Chalmers, and D. Bloor, J. Polym. Sci. Polym. Phys. Ed., Vol. 22, pp. 1589–1606, 1984.
[3] D. M. Krol and M. Thakur, Appl. Phys. Lett., Vol. 56, 1406, 1990 [Online]. Available: https://doi.org/10.1063/1.102482.
[4] D. Vanderbilt, Phys. Rev. B, Vol. 41, pp. 7892–7895, 1990.
[5] G. Weiser, Phys. Rev. B, Vol. 45, pp. 14076, 1992.
[6] James L. Foley, Lian Li, Daniel J. Sandman, Michael J. Vela, Bruce M. Foxman, Rick Albro, and Craig J. Eckhardt, J. Am. Chem. Soc., 1999, Vol. 121, No. 31, pp. 7262–7263.
[7] Sebastian L., Weiser G. Chemical Physics Letters, Vol. 64, No. 2, 1979, pp. 396-400.
[8] A. Kokalj, Comp. Mater. Sci., Vol. 28, pp. 155-168, (2003) [Online]. Available: http://www.xcrysden.org/.
[9] N. Aleshin, J. Y. Lee, S. W. Chu, S. W. Lee, B. Kim, S. J. Ahn and Y. W. Park, Phys. Rev. B, Vol. 69, pp. 214203, 2004.
[10] C. Jeffrey Brinker, Zhenzhong Yang and Yunfeng Lu., J. Am. Chem. Soc., Vol. 127, pp. 12782-12783, 2005.
[11] Safa O. Kasap and Peter Capper, Springer handbook of electronic and photonic materials, Springer, Vol. 54, pp. 327, 2006. ISBN 0-387-26059-5.
[12] H. R. Sreepad, K. P. S. S. Hembram and U. V. Waghmare, AIP Conf. Proc.,Vol. 1349, pp. 871-872, 2011.
[13] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulas, Rev. Mod. Phys., Vol. 64, No. 4, pp. 1045-1097, 1992.
[14] H. R. Sreepad, H. R. Ravi, Khaleel Ahmed and U. V. Waghmare, AIP Conf. Proc., Vol. 1447, No.1, pp. 793-794, 2013.
[15] H. R. Sreepad, Chemical Technology: An Indian Journal, Vol. 11, No.4, pp. 133-137, 2016.
[16] H. R .Sreepad, Organic Chemistry: An Indian Journal, Vol 12, No. 1, pp. 1-5, 2016.
[17] H. R. Sreepad, Mol. Crys. Liq. Cryst., Vol. 625, No.1, pp. 195-201, 2016.
[18] H. R. Sreepad, Mol. Crys. Liq. Cryst., Vol. 634, pp. 91- 96.
[19] Huisheng Peng, Jing Tang, Jiebin Pang, Daoyong Chen, Lu Yang, Henry S. Ashbaugh, C. Jeffrey Brinker, Zhenzhong Yang and Yunfeng Lu., J. Am. Chem. Soc., Vol. 127, pp. 12782-12783, 2005.
[20] [Online]. Available: http://en.wikipedia.org/wiki/Molecular_modelling
[21] S. Baroni, S. A. Dal Corso, P. DeGironcoli and Gianozzi, [Online]. Available: http://www.pwscf.org
[22] J. P. Perdew and A. Zunger, Phys. Rev. B, Vol. 23, pp. 5048-5079, 1981.
[23] M. A. Methfessel and Paxton, Phys. Rev. B, Vol. 40, pp. 3616 – 3621, 1089.
[24] [Online]. Available: http://avogadro.openmolecules.net/wiki/
[25] Ioffedatabase [Online]. Available: http://www.ioffe.ru/SVA/NSM/Semicond/