
Asian Journal of Science and Applied Technology (AJSAT)
First-Principles Study of Electronic and Dielectric Properties in Lanthanum Manganate
Author : H. S. Omkar and H. R. SreepadVolume 8 No.1 January-June 2019 pp 16-18
Abstract
First-principles calculations based on Density Functional Theory have been done on Lanthanum manganate. Its orthorhombic unit cell has been simulated. Electronic density of states has been computed and it shows that the material shows the nature of semiconducting material with a band gap of 1.38eV. Dielectric constant and Polarizability of the material have been computed. The value of dielectric constant comes out to be 47.3, 13.3 and 15.2 along X, Y and Z axes respectively with an average value of 25.3. The polarizability values are found to be 55.1(Å)3, 47.2(Å)3 and 48.5 (Å)3 along X, Y and Z axes respectively with an average value of 50.3(Å)3. Phonon modes at gamma point in the material range from 0 cm-1 to 885 cm-1.
Keywords
Lanthanum Manganate, Dielectric Constant, Electronic Density of States, First-Principles Calculations, Polarizability, Phonon Modes
References
[1] S. Satpathy, Zoran S. Popovic, and Filip R. Vukajlovic, “Electronic Structure of the Perovskite Oxides: La1−xCaxMnO3”, Physical Review Letters. Vol.76, pp960–963. doi:10.1103/PhysRevLett.76.960, 1996.
[2] Dagotto, E. “Nanoscale Phase Separation and Colossal Magnetoresistance”, Springer Series in Solid-State Sciences, 2003.
[3] R.Von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, “Giant negative magnetoresistance in perovskitelike La2/3Ba1/ 3MnOx ferromagnetic films”, Phys. Rev. Lett. Vol.71, pp. 2331-2333, 1993.
[4] P. Schiffer, A. P. Ramirez, W. Bao, and S. W. Cheong, “Low Temperature Magnetoresistance and the Magnetic Phase Diagram of La1−xCaxMnO3”, Phys. Rev. Lett. Vol.75, No.18, pp. 3336-3339, 1995.
[5] C. N. R. Rao, “Novel materials, materials design and synthetic strategies: recent advances and new directions”, J. Mater. Chem. Vol. 9, No.1, pp. 1-14, 1999.
[6] S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, “Thousand fold change in resistivity in magnetoresistive la-ca-mn-o films”, Science Vol.264, pp. 413-415, 1994.
[7] K. Petrov, L. Krusin-Elbaum, J. Z. Sun, O. Field, and P. R. Duncombe, “Enhanced magnetoresistance in sintered granular manganite/insulator systems”, Appl. Phys. Lett. Vol.75, pp. 995-997, 1999.
[8] J. Z. Sun, L. Krusin-Elbaum, A. Gupta, G. Xiao, P. R. Duncombe, and S. S. P. Parkin, “Magnetotransport in doped manganate perovskites”, IBM J. Res. Dev. Vol.42, pp. 89-102, 1998.
[9] S. S. P. Parkin, “Giant Magnetoresistance in Magnetic Nanostructures”, Annu. Rev. Mater. Sci. 25, pp. 357-388, 1995.
[10] H. R. Sreepad, K. P. S. S. Hembram and U.V. Waghmare, “First-principles Study of Electronic and Dielectric Properties of Polyoxymethylene”, AIP Conference Proceedings, Vol. 1349, pp. 871-872, 2011.
[11] H. R. Sreepad, “First-principles study of fluorination of azobenzene”, Molecular Crystals and Liquid Crystals, Vol. 634, pp. 91- 96, 2016.
[12] M. C. Payne, M.P. Teter, D.C. Allan, T.A. Arias and J.D. Joannopoulas, “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients”, Reviews of Modern Physics, Vol. 64, No. 4, pp.1045-1097, 1992.
[13] H. R. Sreepad, H. R. Ravi, Khaleel Ahmed and U.V. Waghmare, “Radiation induced changes in electronic and dielectric properties of polyoxymethylene” AIP Conference Proceedings, Vol.1447, No. 1, pp.793-794, 2013.
[14] H. R. Sreepad, “Structure simulation and study of electronic and dielectric properties of two derivatives of benzamide”, Molecular Crystal sand Liquid Crystals, Vol. 625, No.1, pp.195-201. 2016.
[15] [Online] Available: http://en.wikipedia.org/wiki/ Molecular_ modelling.
[16] S. Baroni, S. A. DalCorso, P. DeGironcoli and Gianozzi, [Online] Available: http://www.pwscf.org
[17] J. P. Perdew and A. Zunger, “Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems”, Physical Review B, Vol. 23, pp. 5048-5079, 1981.
[18] D. Vanderbilt, “Soft self-consistent pseudo potentials in generalized eigenvalue formalism”, Physical Review B, Vol. 41, pp.7892–7895, 1990.
[19] H. J. Monkhorst and J. D. Pack, “Special Points for Brillouin-Zone Integrations,” Physical Review B, Vol. 13, No. 12, pp. 5188-5192, 1976.
[20] M. A. Methfessel and Paxton, “High-precision sampling for Brillouin-zone integration in metals”, Physical Review B, Vol. 40, pp. 3616-3621, 1989.
[21] [Online] Available: http://avogadro.openmolecules.net/wiki/
[22] J. Rodriguez-Carvajal, M. Hennion, F. Moussa, A. H. Moudden, L. Pinsard, A. Revcolevschi, “Neutron-diffraction of the Jahn-Teller transition in stoichiometric LaMnO3”, Physical Review B – Condensed Matter, Vol. 57, pp. 3189-3192, 1998
[23] A. Kokalj, “Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale,” Computational Materials Science, Vol. 28, pp. 155-168, [Online] Available: http://www. xcrysden.org/ 2003
[24] Taka-hisa Arima, and Yoshinori Tokura. “Optical Study of Electronic Structure in Perovskite-Type RMO3 (R=La, Y; M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu)”, J. Phys. Soc. Jpn. Vol. 64, pp. 2488-2501, 1995.