Growth, XRD, Mechanical, Optical and SHG Studies of L-Lysine L-Tartaric Acid Crystals
Author : C. Anbulakshmi, P. Selvarajan and S. SelvarajVolume 8 No.2 April-June 2019 pp 57-62
Abstract
Single crystals of L-lysine L-tartaric acid (LLLT) were grown by solution method using double distilled water as the solvent. The grown crystals LLLT were subjected to characterization studies like XRD studies, mechanical studies, optical studies and SHG studies. From XRD studies, it is ascertained that LLLT crystal crystallizes in monoclinic structure. The grown crystal has high transmittance in the visible region and it has high optical band gap. The mechanical parameters like hardness, work hardening coefficient, yield strength, stiffness constant, brittleness index, corrected hardness and resistance pressure of LLLT crystal have been evaluated by using Vickers microhardness method. The relative SHG efficiency of LLLT crystal has been determined by Kurtz-Perry powder technique.
Keywords
Single Crystal, Solution Growth, NLO, XRD, Hardness, Transmittance, Band Gap, Stiffness Constant, Yield Strength, SHG
References
[1] J. Ledourx, J. Badan, J. Zyss, A. Migus, D. Hulin, J. Etchepare, G. Grillon and A. Antonetti, “Generation of high-peak-power tunable infrared femto second pulses in an organic crystal: application to time resolution of weak infrared signals”, J. Opt. Soc. Am. Vol.4, pp. 987- 997, 1987.
[2] S. Boomadevi, H.P. Mittal, R. Dhansekaran, S. Boomadevi, H. P.Mittal and R. Dhansekaran, “Synthesis, Crystal Growth and Characterization of 3-Methyl 4-Nitropyridine 1-Oxide (POM) Single Crystals,” J. Crystal Growth., Vol. 261, pp. 55-62, 2004.
[3] N.J. Long and Angew. “Organo-metallic compounds for nonlinear optics-The Search for Enlightenment”, Chem. Int. Ed. Engl., Vol. 34, pp. 21-38, 1995.
[4] M. K. Marchewka, S. Debrus and H. Ratajczak, “Vibrational Spectra and Second Harmonic Generation in Molecular Complexes of L-Lysine with L-Tartaric, D, L-Malic, Acetic, Arsenous, and Fumaric Acids”, Crystal Growth Des, Vol.3, pp. 587-592, 2003.
[5] N. Srinivasan, B. Sridhar and R.K. Rajaram, “L-Lysine L-lysinium dichloride nitrate” Acta Crystallogr, Vol. 57, pp. 888-890, 2001
[6] S. Suresh, G. S. Prasad and M. Vijayan, “X-ray studies on crystalline complexes involving amino acids and peptides and crystal structure of two forms of L-histidine acetate and a comparative study of the amino acid complexes of acetic acid”. Int. J. Pept. Protein Res. Vol. 43, pp. 139-145, 1994.
[7] S. Suresh, M. Vijayan and J. Biosci, “Variability in ionization state, stoichiometry and aggregation in histidine complexes with formic acid”, Journal of Biosciences, Vol. 20, pp. 225-234, 1995.
[8] N.R. Chandra, M. M. Prabu, M. M. Venkataraman, S. Suresh, M. Vijayan, “Amino Acids, Peptides and Proteins”, Acta Crystallogr., Vol. 54, pp. 257, 1998.
[9] J. Pratap, V. Ravishankar and R. Vijayan, “M. X-ray studies on crystalline complexes involving amino acids and peptides. Invariance and variability in amino acid aggregation in the complexes of Maleic acid with L-histidine and L-lysine”, Acta Crystallogr, Vol. 56, pp. 690-696, 2000.
[10] N. Saraswathi, T, Manoj, and N.Vijayan, M, “X-ray studies on crystalline complexes involving amino acids and peptides. Novel aggregation patterns and effect of chirality in the complexes of DL- and L-lysine with glutaric acid”, Acta Crystallogr, Vol. 57, pp. 366-371, 2001.
[11] P.L. Polavarapu, C.S. Ewig, and T. Chandramouly, “Conformtions of tartaric acid and Its Esters”, J. Am. Chem. Soc. Vol.109, pp. 7382, 1987.
[12] M. Koralewski, and M. Szafranski, “l-lysine-l-tartaric acid: new molecular complex with nonlinear optical properties”, Ferroelectrics, Vol. 80, pp. 917, 1988.
[13] M. Koralewski and Szafranski, “Optical activity, domain structure and deflection of light at domain walls in lithium ammonium tartrate monohydrate” Ferroelectrics, Vol. 97, pp. 233, 1989.
[14] M. Maeda, K. Honda, and I. Suzuki, “Dielectric, Elastic and Piezoelectric Properties of the Mixed Crystals System Na [K1-x (NH4) x]-Tartrate (0.90 < x <1.0)”, J. Phys. Soc. Jpn. Vol. 7 pp. 2642-2649, 1995.
[15] K. Deguchi, and Y. Iwata, “Effects of Deuteration on Displacive-Type Ferroelectric Phase Transition of LiTlC 4H4O6·H 2O”, J. Phys. Soc. Jpn. Vol. 69, pp. 135-138, 2000.
[16] B. Gerth, A. Sahling, G. Pompe, E. Hegenbarth, and B. Brezina, “Ferroelectric Properties of Solid Solutions of Triglycine Sulfate and Fluoberyllate Crystals”, Phys. Stat. Sol. (A), Vol. 57, pp. K153, 1980.
[17] M.M. Abdelkader, Z.H. Eltanahy, M. Abutaleb, A. Abousehly, and A. Elsharkawy, “l-lysine-l-tartaric acid: New molecular complex with nonlinear optical properties. Structure, vibrational spectra and phase transitions”, Philos. Mag. B., Vol. 72, pp. 91, 1995.
[18] Kanesaka, H. Kita, “Vibrational study on phase transition in ammonium Rochelle salt”, J. Raman Spectrosc. Vol. 23, pp. 585, 1992.
[19] P. Kolandaivel, and S. Selvasekarapandian, “Laser Raman and FT-IR spectrum of ammonium hydrogen tartrate and potassium hydrogen tartrate crystals”. Cryst. Res. Tech. Vol. 28, pp. 665, 1993.
[20] S. Kamba, B. Brezina, J. Petzelt, and G. Schaack, “Study of the phase transition in lithium ammonium tartrate monohydrate by means of infrared and Raman spectroscopy”. Journal of Phys.: Condens Matter, Vol. 8, pp. 8669, 1996.
[21] D. Shanthi, P. Selvarajan, K.K. Hema Durga, and S. Lincy Mary Ponmani, “Nucleation kinetics, growth and studies of β-alanine single crystals” Spectrochimica Acta Part A, Vol. 110, pp. 1-6, 2013.
[22] S. Debrus, M.K. Marchewk, J. Baran, M. Drozd, R. Czopnik, A. Pietraszko, and H. Ratajczak, “L-lysine-L-tartaric acid: New molecular complex with nonlinear optical properties. Structure, vibrational spectra and phase transitions”, J.Solid State Chemistry, Vol. 178, pp. 2880-2896, 2005.
[23] H. Ishikaa, and N. Skinkai, “Critical Load for Median crack initiation in vickers indentation of Glasses”, J. Am. Ceram. Soc., Vol. 65, pp. 124-127, 1982.
[24] W.A. Wooster, “Physical properties and atomic arrangements in crystals”, Rep. Prog. Phys., Vol. 16, pp. 62-82, 1953.
[25] J. Tauc., R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous Germanium”, Physica status solid, Vol. 15, pp. 627-637, 1996.
[26] S.K. Kurtz, and T.T. Perry, “A Powder Technique for the evaluation of nonlinear optical Materials”, J. Appl. Phys, Vol. 39, pp. 3798-3813, 1968.