
Asian Journal of Engineering and Applied Technology (AJEAT)
Heat Transfer Enhancement by Using Nanomaterial in Phase Change Material for Latent Heat Thermal Energy Storage System
Author : A.T. Pise, A. V. Waghmare and V. G. TalandageVolume 2 No.2 July-December 2013 pp 52-57.
Abstract
Latent heat energy storage systems using paraffin wax could have lower heat transfer rates during melting / freezing processes due to its inherent low thermal conductivity. The thermal conductivity of paraffin wax can be enhanced by employing high conductivity materials such as alumina (Al2O3) nanopowder. In this paper the experimental investigation has been carried out to study the performance enhancement of paraffin wax with nanoalumina (Al2O3) particles in mass fraction of 1, 3, and 5% in a Latent Heat Thermal Energy Storage (LHTES) System at constant flow rate and variable temperature of heat transfer fluid (HTF). The effect of alumina nanoparticle on total cyclic time of LHTES for different mass fraction has been studied. Commercially available paraffin wax is used as a phase change material (PCM). The present results illustrate that the suspended nanoparticles substantially increase the heat transfer rate and also the nanofluid heat transfer rate increased with an increased in the nanoparticles mass fraction. The comparative results with and without nanoalumina (Al2O3) enhancement indicate that the charging rate of thermal energy can be greatly enhanced using paraffin wax with alumina as compared with a simple paraffin wax as PCM. The increase of the heat release rate of the nanoparticle-enhanced phase change materials shows its great potential for diverse thermal energy storage application.
Keywords
Latent heat, Thermal storage, Phase Change Material, Paraffin Wax, Heat Transfer Fluid, Charging Rate.