
Asian Journal of Science and Applied Technology (AJSAT)
Turbulence Characteristics in a Rushton Stirring Vessel: A Numerical Investigation
Author : Mohammad Amin Rashidifar and Ali Amin RashidifarVolume 2 No.2 July-December 2013 pp 25-42
Abstract
Understanding of the flow in stirred vessels can be useful for a wide number of industrial applications, like in mining, chemical and pharmaceutical processes. Remodeling and redesigning these processes may have a significant impact on the overall design characteristics, affecting directly product quality and maintenance costs. In most cases the flow around the rotating impeller blades interacting with stationary baffles can cause rapid changes of the flow characteristics, which lead to high levels of turbulence and higher shear rates. The flow is anisotropic and inhomogeneous over the entire volume. A better understanding and a detailed documentation of the turbulent flow field is needed in order to design stirred tanks that can meet the required operation conditions. This paper describes an effort for accurate estimation of the velocity distribution and the turbulent characteristics (vorticity, turbulent kinetic energy, dissipation rate) in a cylindrical vessel agitated by a Rushton turbine (a disk with six flat blades). Results from simulations using FLUENT (a commercial CFD package) are compared with Time Resolved Digital Particle Image Velocimetry (DPIV) for baseline configurations in order to validate and verify the fidelity of the computations. Different turbulent models are used in this study in order to determine which one is the most appropriate. Subsequently a parametric analysis of the flow characteristics as a function of the clearance height of the impeller from the vessel floor is performed. Results are presented along planes normal or parallel to the impeller axis, displaying velocity vector fields and contour plots of vorticity turbulent dissipation and others. Special attention is focused in the neighborhood of the impeller region and the radial jet generated there. The present results provide useful information for the design of the mixing process as well as for more accurate estimations in future work.
Keywords
Mixing; Stirring tank; Turbulence; DPIV; FLUENT; Rushton turbine