
Asian Journal of Science and Applied Technology  

        ISSN: 2249-0698 Vol. 7, No.1, 2018, pp.17-19 

          © The Research Publication, www.trp.org.in 

 Entanglement Measure Based on Matrix Realignment  
 

Sushamana Sharma
1
 and J K Sharma

2
 

1
Department of Physics, JIET College of Engineering, Rajasthan, India 

2
Jai Narain Vyas University, Jodhpur, Rajasthan, India 

E-Mail: sushamana@gmail.com 

 

Abstract - Quantum information processing is the essential 

requirement of quantum technology. The foundation of 

information processing is the quantum entanglement. We 

propose a new entanglement measure to quantify 

entanglement and it is based on matrix realignment technique. 

A comparative study of proposed measure with concurrence 

for different types of entangled states is also discussed. 
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I. INTRODUCTION 

 

Today‟s era is the era of information. From ancient time to 

today, humans are developing new technologies for smooth 

and comfortable life. For a successful civilization, good 

communication is required. Revolution of human 

communication may be considered from the origin of 

speech and from then till now we have designed smart 

phones, internet, banking and many more for faster and 

better communication. To ensure security of information, 

such as authenticity, data confidentiality and data integrity, 

cryptography technique is used. From the very first known 

technological invention, wheel to space craft, people have 

been inventing new ways to travel faster from one place to 

another but all modes of transportation require some 

physical distance to be covered. A new way of 

transportation is developed by combining the properties of 

telecommunication and transportation known as 

teleportation.  

 

Cryptography, teleportation and many other phenomena 

require information to be processed and broadly known as 

quantum information processing. In information processing, 

as in physics, the classical view provides an incomplete 

approximation to an underlying quantum reality. 

Information processing which applies principles of quantum 

effects like interference and entanglement is called quantum 

information processing [1].In this field, laws of quantum 

physics and information theory bring together to perform 

tasks which are not possible within the framework of 

classical physics. It helps in speeding up of computation and 

achieving faster and even more secure communication. It is 

a multidisciplinary field which holds quantum physics, 

chemistry, machine learning, optics, simulation, and 

metrology, computer science and engineering as well as 

condensed matter physics, biochemistry, physical 

chemistry, inorganic and organic chemistry, and 

spectroscopy. The 1990‟s saw the development of a 

quantum theory of information, based on the realization that 

entanglement can actually be exploited as a non-classical 

communication channel to perform information-processing 

tasks that would be impossible in a classical world. In a 

two-part commentary on the EPR paper [2], Schrödinger [3] 

identified entanglement as „the characteristic trait of 

quantum theory, the one that enforces its entire departure 

from classical lines of thought.‟ This hasled to an explosive 

surge of research among physicists and computer scientists 

on the application of information-theoretic ideas to quantum 

computation which exploits entanglement in the design of a 

quantum computer, so as to enable the efficient performance 

of certain computational tasks, to quantum communication 

such as quantum teleportation and to quantum cryptography 

that is guaranteed to be unconditionally secure against 

eavesdropping, by the laws of quantum mechanics. The key 

of quantum information processing is quantum 

entanglement. It is a phenomenon which has no classical 

analogue. Entangled states are basically superposed states. It 

was first pointed out by Einstein, Podolsky and Rosen 

(EPR) as incompleteness of quantum theory but according 

to Schrodinger it is the beauty of quantum mechanics.  

 

Later on, after the successful experimental proof by Bell in 

1964, EPR accepted that these states are not showing the 

incompleteness of quantum mechanics [4]. These states are 

sometimes also known as EPR pair or Bell states for two 

particles. By definition, entangled states are those which are 

not separable or cannot be written as product of individual 

particle‟s state. It is a type of correlation between particles 

irrespective of the physical distance separating them. 

Mathematical form of bipartite entangled states is: 

 

|  〉  
 

√ 
(|  〉  |  〉) 

|  〉  
 

√ 
(|  〉  |  〉) 

 

A class of noisy entangled states termed as Werner state [5, 

6] has the form 

 ̂   | 〉〈 |  (   )
 

 
 

here  | 〉 is pure entangled state while (   ) 
 
 is the noise 

and   is a parameter predicting the pure entanglement 

present in it and varies in between 0 and 1. When p=0, the 

state is separable and p=1 corresponds maximally entangled 

state. 
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II. LITERATURE REVIEW 

 

The application of entanglement mainly quantum 

information processing requires the states to be maximally 

entangled. To quantify and to detect entanglement several 

methods have been proposed by researchers [7]. Positive 

partial transpose criterion derived by Asher Peres [8] is well 

established criterion for detection of entanglement. This is 

necessary and sufficient condition for separability for 2 2 

and 2 3 [7] systems but for other it is only sufficient not 

necessary. For a set of mixed bipartite state, if it‟s partially 

transposed matrix with respect to second particle, with 

elements 

⟨    | ̂
  |    ⟩  ⟨    | ̂|    ⟩ 

 

is a density operator then  ̂  will be separable. There are 

some states which are entangled but cannot be detected 

through this criterion. Another method of detection was 

suggested by Miranowicz et al., in 2009 and Horodecki et 

al., in 2007 [7, 9]. It is also based on manipulation of 

matrices like partial transposition criterion. It detects pure 

entanglement as well as PPT entanglement [8]. Realignment 

of matrix is defined as 

 

⟨    | ̂
 |    ⟩  ⟨    | ̂|    ⟩                               (1) 

 

If the trace norm of realigned matrix  ̂  is not greater than 

one then the state is said to be separable otherwise 

entangled i.e. for entangled state ‖ ̂ ‖   . The trace norm 

is defined as ‖ ‖    (√   ). Any state that violates the 

realignment criterion there is a local uncertainty relation is 

violated. For Werner state same condition for entanglement 

is obtained as obtained by PPT criterion which is, for all the 

state is entangled,     

 
.  Let‟s take |  〉  as a part of 

Werner state and using (1), the realigned matrix will be 
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]  and 
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                                                 (2) 

 

From (2), it is observed that ‖ ̂ ‖    if     

 
.For Bell 

state, ‖ ̂ ‖    i.e. maximum value of trace norm of 

realigned matrix is 2. 

 

Negativity is an entanglement measure that attempts to 

quantify the negativity in the spectrum of the partially 

transposed density matrix [10]. For a separable state, the 

partial transposed density matrix will have non-negative 

eigenvalues. It is sufficient condition for  ⨂       ⨂  

systems. It is defined as 

 ( ̂)  
‖ ̂  ‖   

 
 

We have another measure for entanglement termed as 

concurrence. It is well defined quantitative measure of 

entanglement for bipartite system as well as for multipartite 

system. It is defined separately for pure and mixed state. For 

a pure state of a pair of qubits, the concurrence  ( )  is 

defined as [11] 

 ( )  |⟨ | ̃⟩|  √ [    ( ̂  )] 

 

where | ̃〉 represents the spin flip operator and is obtained 

by | ̃〉       | 
 〉  and |  〉  is the complex conjugate 

of  and where  ̂       ̂  is reduced density matrix. For 

mixed state 

 

 ( ̂)     *             + 
 

where  
   are the square roots of the eigenvalues of  ̂ ̃ in 

descending order when it has no more than two non zero 

eigen values of operator  ̂ ̃ . Here 

 

 ̃  (     ) ̂
 (     ). 

 

Next section deals with the new proposal of entanglement 

measure. It is also known as computational Cross norm 

Criterion (CCN) and in this paper, an attempt is made to 

show that it may be used to quantify entanglement. 

 

III. METHODOLOGY 

 

The inductive reasoning methodology has been adopted for 

the research. It aims to engender meanings from the 

prepared set in order to identify patterns and connectivity to 

build a theory patterns, resemblance and regularities have 

been observed in order to reach conclusion. MATLAB 

programming is used to calculate values of the two 

measures. 

 

IV. FINDINGS AND SUGGESTION 

 

Here we suggest similar to negativity, the following as 

entanglement measure 

 

  ( ̂)  ‖ ̂
 ‖      

 

as entanglement measure. This measure is based upon 

realignment of a density matrix. For separable states, 

‖ ̂ ‖       ( ̂)    and for Bell state ‖ ̂ ‖   
    ( ̂)   . It is observed that, this measure and 

concurrence both are equivalent for certain states. 

Evaluation of   ( ̂) is much simpler than the concurrence 

as well as it detects entanglement simultaneously.  

A comparative study of these two criteria is given as under:  

 

A. For Werner States: The density matrix for Werner state 

is given by 

 

 ̂  
 

 
(|  〉〈  |  |  〉〈  |  |  〉〈  |  |  〉〈  |)
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For different values of   
 

 
, corresponding   ( ̂)  is 

tabulated with concurrence and NR=  ( ̂) see table 1.    
 

B. For mixture of Bell States: The density matrix will be 

 ̂   |  〉〈  |  (   )|  〉〈  | 
 

TABLE I FOR WERNER STATES 
 

S. No. P NR Concurrence 

1 0.333333 0 0 

2 0.4 0.1 0.1 

3 0.5 0.25 0.25 

4 0.6 0.4 0.4 

5 0.7 0.55 0.55 

6 0.8 0.7 0.7 

7 0.9 0.85 0.85 

8 1 1 1 

 
TABLE II FOR MIXTURE OF BELL STATES 

 

S. No. P NR Concurrence 

1 0.5 0 0 

2 0.6, 0.4 0.2 0.2 

3 0.7, 0.3 0.4 0.4 

4 0.8, 0.2 0.6 0.6 

5 0.9,0 .1 0.8 0.8 

 

C. For Mixture of Bell States and Separable States: Its 

density matrix will be 

 ̂   |  〉〈  |  (   )| 〉〈 |  
 

Where| 〉  
 

 
(|  〉  |  〉  |  〉  |  〉)  

 

The concurrence and   ( ̂)of state under consideration has 

been computed and are tabulated below. 
 

V. ANALYSIS 

 

Since negativity is based on partial transposition of density 

matrix it triggers to think whether the realignment criterion 

may be used to measure entanglement. It is compared with 

the well-established entanglement measure concurrence in 

which density matrix is manipulated under the multiple 

operation of    and its cross product in a systematic 

manner. The results found are in good agreement.   

 

 
TABLE III FOR MIXTURE OF BELL STATES AND SEPARABLE STATES 

 

S. No. P NR Concurrence 

1 0.1 0.1 0.1 

2 0.2 0.2 0.2 

3 0.3 0.3 0.2999 

4 0.4 0.4 0.4 

5 0.5 0.5 0.4999 

6 0.6 0.6 0.6 

7 0.7 0.7 0.7 

8 0.8 0.8 0.7999 

9 0.9 0.9 0.8996 

 

 

VI. CONCLUSION 

 

It is evident that the proposed entanglement measure and the 

established one i.e. concurrence are equivalent for states 

under consideration. It may be conjectured that this may be 

used to quantify entanglement in other states too. 

Computation of concurrence for pure state is easy but 

difficult for mixed state and therefore it may find broad 

spectrum of applicability. 

 

REFERENCES 

 
[1] Charles H. Bennett and David P. DiVincenzo, “Quantum 

Information and Computation”, Nature, Vol. 404, pp. 247-255, 

2000. 

[2] A. Einstein, B. Podolsky and N. Rosen, “Can Quantum-Mechanical 
Description of Physical Reality Be Considered Complete?”, Phys. 

Rev. Vol.  47, pp. 777-780, 1935. 
[3] E. Schrödinger , Die Naturwissenschaften, Vol. 23, pp. 807, 1935  

[4] J. S. Bell, “On the Einstein PodolskyRosen paradox”, Physics 

(Long Island City, N.Y.) Vol. 1, pp. 195-200, 1964. 
[5] R. F. Werner, “Quantum states with Einstein-Podolsky-Rosen 

correlations admitting a hidden-variable model”, Phys. Rev. A, Vol. 

40, pp. 4277, 1989. 
[6] K. G. H. Vollbrecht and R.F. Werner, “Entanglement Measures 

Under Symmetry”, Phys. Rev. A, Vol. 64, pp. 062307, 2001. 

[7] R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, 
“Quantum Entanglement”, Rev. Mod. Phys., Vol. 81, pp. 865, 

2009. or eprint quant-ph/0702225 pg. 110 

[8] A. Peres, “Separability Criterion for Density Matrices”, Phys. Rev. 
Lett., Vol. 77, pp. 1413 , 1996. 

[9] A. Miranowicz, M. Piani, P. Horodecki and R. Horodecki, 

“Inseparability Criteria Based On Matrices Of Moments”, Phys. 

Rev. A, Vol. 80, pp. 052303, 2009 or eprint quant-ph/0605001 

[10] G. Vidal and R.F. Werner, “Computable Measure of 

Entanglement”, Phys. Rev. A, Vol. 65, pp. 032314, 2002. 
[11] W.K. Wootters, “Entanglement of Formation of an Arbitrary State 

of Two Qubits”, Phys. Rev. Lett., Vol. 80, pp. 2245, 1998.

 

 

 

 

19 AJSAT Vol.7 No.1 January-June 2018

Entanglement Measure Based on Matrix Realignment




